

Pre-clinical evaluation of a novel antibody drug conjugate (ADC) LM-306 targeting IL-13Rα2 in immuno-oncology Wentao Huang¹, Zhifang Liu¹, Yifan Li¹, Heng Pan¹, Yuan Li¹, Xia Qin¹, Da Fei¹, <u>Runsheng Li¹</u>.

Introduction

- Interleukin-13 receptor subunit alpha-2 (IL-13Rα2) is a high-affinity membrane receptor of IL-13 abundantly expressed in wide range of tumours.¹⁻³
- IL-13R α 2 is over-expressed in 83% of pediatric and 58% of adult brain tumours, 38.7% in glioma tissues and 7.5% in melanomas.^{1, 3} • Overexpression of IL-13Rα2 also increases the invasiveness and metastatic potential of cancer cells and hence could be a potential target for anti-cancer therapy.¹
- Several studies have substantiated the promising role of IL-13R α 2 against gliomas in immunotherapy trials.¹
- LM-306, a novel antibody-drug conjugation (ADC) developed to target IL-13Rα2, is comprised of a recombinant humanized anti-IL-13Rα2 IgG1 mAb (LM-106) coupled with cytotoxic payload MMAE.
- Preclinical studies were conducted to characterize LM-306 in IL-13Rα2-positive cells, including binding affinity, internalization, Antibodydependent cell-mediated cytotoxicity (ADCC), cell cytotoxicity, bystander effect and in vivo efficacy in melanoma models.

LM-306 Mechanism of Action

igo De Methods

In vitro assays

- Antibody binding activity to Human IL-13Rα2 expressing cells and endogenous IL-13Rα2 expressing cancer cells were tested by flow cytometry.
- Cross-species reactivity of antibody was assessed in rhesus, cynomolgus, mouse and rat IL-13Rα2 overexpressing cell lines and antibody binding
- affinity were assessed in Bio-Layer interferometry assay.
- The internalization efficacy of antibodies toward human IL-13Rα2 expressing cell lines were determined using fluorescence intensity.
- ADCC direct cytotoxicity and bystander effect were assessed using viability assays.

In vivo assays

Anti-tumour activity was investigated using A375 CDX model.

Results

LM-306 Potently Bind to Human IL-13Ra2 Expressing Cell and Endogenous IL-13Ra2 Expressing Cancer Cells

Cell Line EC ₅₀ (nM)	HEK293/H_IL- 13Rα2	U251	A375	Figure 1: Cellu Cell based bir
LM-106	0.79	0.53	0.31	bind to huma
LM-306	0.99	0.53	0.35	expressing U2 cells (C) in a (

ular Binding.

inding of antibodies to Human IL-13Rα2 expressing cell sessed using flow cytometry. LM-106 and LM-306 potently an IL-13Rα2-expressing cells (A), endogenous IL-13Rα2 J251 Glioma cancer cells (B) and A375 Melanoma cancer dose-dependent manner.

¹LaNova Medicines Limited, Shanghai, China

Figure 2: Cross-species Binding of LM-106.

CHOK1 cells overexpressing Rhesus (A) cynomolgus monkey (B) Mouse (C) and rat (D) IL-13Rα2 were incubated in the presence of a range of concentrations of LM-106, the naked antibody of LM-306. LM-106 only can effectively bind to rhesus, cynomolgus monkey IL-13Rα2 in a dose dependent manner with EC_{50} of 0.21nM and 0.22nM, respectively.

LM-106 Internalized in Human IL-13Ra2 Expressing Cell and Cancer Cells

LM-106 Showed Strong Concentration-Dependent ADCC in IL-13Ra2-Positive cells

LM-106 Cross-Reacted with Rhesus and Cynomolgus Monkey IL-13Ra2

	LM-306				
ax (nm)	KD (M)	ka (1/Ms)	kd (1/s)	Rmax (nm)	
.9905	7.43E-10	2.37E+05	1.76E-04	0.9766	
3066	4.84E-10	142208.1	6.88E-05	1.3313	

Figure 3: Binding Affinity of Antibodies to Human and Rhesus Monkey IL-13Ra2 Test by Bio-Layer interferometry assay.

Test antibodies were diluted to 5µg/mL and immobilized to Protein A Dip and Read Biosensors. 3-folds serial dilutions of Human IL-13R α 2 and Rhesus IL-13R α 2 starting from 100nM and used as analytes. The equilibrium dissociation constant(KD) was calculated as the ratio kd/ka. Data were analyzed and KD was calculated by software Octet Analysis Studio 12.2. Binding affinity of LM-306 to human and rhesus monkey IL-13R α 2 were comparable with LM-106 (KD:7.43E-10 vs 1.77E-9, KD: 4.84E-10 vs 7.56E-10).

Figure 4: Internalization of LM-106.

Antibodies were conjugated with pHAb dye, which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH in lysosome with internalization. IL-13R α 2-positive cells were incubated with Antibody-pHdye conjucation for 24 hours and detected fluorescence by Envison. LM-106 showed concentration-dependent internalization in human IL-13Ra2-expressing cells (A), endogenous IL-13Ra2 expressing U251 Glioma cancer cells (B) and A375 Melanoma cancer cells (C) with EC_{50} of 2.23nM, 0.44nM and 0.43nM, respectively.

Figure 5: LM-106 Induces Potent ADCC Effects. Serial dilutions of antibodies were incubated for 6 hours at 37°C with engineered Jurkat effector cells (ADCC Bioassay Effector Cells) and

ADCC Bioassay target Cells (IL-13R α 2-positive cells). Luciferase activity was quantified using ONE-Glo™ Luciferase Assay Buffer Reagent.

ADCC of LM-106 in human IL-13Rα2-expressing cells (A), endogenous IL-13R α 2 expressing U251 Glioma cancer cells (B) and A375 Melanoma

cancer cells (C) in a dose-dependent manner with EC_{50} of 0.16nM, 0.06nM and 0.03nM, respectively.

HEK293/Η IL13Rα2

Figure 6: Target-Dependent Cytotoxic of LM-306. IL-13Ra2-positive cells were treated with antibodies at respective concentrations 5 days, and cell viability was determined by CellTiter-Glo® viability assay kit. LM-306 exhibited strong dose dependent cytotoxicity in Human IL-13Rα2 Expressing Cells (A) and Endogenous IL-13Rα2 expressing Cancer Cells (B-C) with EC₅₀ of 0.03nM, 0.05nM and 0.01nM, respectively.

Preclinical Nonhuman Primate (NHP) Study

- The toxicity of LM-306 was evaluated in a single intravenous maximum tolerated study (MTD) (18 mg/kg, n = 1/sex/group) and a 4-weeks repeated-dose (Q2W x 3) GLP toxicity study (9 mg/kg, n = 1/sex/group) in cynomolgus monkeys.
- Based on the results, MTD level was considered to be 18 mg/kg for male monkey and 9 mg/kg for female monkey, and 9 mg/kg was considered as HNSTD (highest non-severely toxic dose) level in 4-weeks repeated dose GLP study.

Conclusion

Reference

- Hayato et al. Sci Rep. (2019) 9: 1281.
- 2. Takahiro et al. Journal of Urology (2020) Volume 203 Issue Supple
- 3. Bart et al. (2014) Neuro-Oncology 16(10): 1304-1312.
- 4. Marei et al. Cancer Cell International (2022) 22:255

Abstract Presentation Number: 1881

LM-306 Has a Target-Dependent Cytotoxicity to Human IL-13Ra2 Expressing Cells

Figure 7: Bystander Effect of LM-306.

IL-13R α 2-negative cells G361 (Left) stably expression firefly luciferase as luminescent report gene, named G361-Luc. Endogenous IL-13Rα2 expressing A375 Melanoma cancer cells and G361-Luc cells mixture (ratio=2:1) were seeded to a 96-well plate for 4000 cell/well, and treated with antibodies at 0/0.1/1/10nM for 6 days. The cell viability was evaluated by Cell-Titer-Glo® viability assay kit. Significantly bystander effect was observed when cell mixture was incubated with LM-306 at 0.1/1/10nM, compared to human IgG1 control antibody (Right).

Figure 8: Anti-tumor Activity in A375 CDX Model.

NCG mice bearing A375 tumor cells were randomized into groups (5 mouse/group) and administered intravenously (i.v) at day 0, day 7, day 14 after tumor size reached 50~100mm³. A. Strong anti-tumor activity was exhibited by LM-306 on A375-CDX model at doses of3, 10 mg/kg, and 5/5 complete response (CR) at dose of 10mg/kg was observed. **B.** Body weight fluctuation shown all treatments were well tolerated.

• LM-306 exhibited preclinical efficacy in *in vitro* and *in vivo* studies, along with well safe and tolerable in NHP study. • LM-306 could significantly inhibit tumor growth, thereby suggesting its role as an anti-tumor agent in cancer therapy. • Our results show great potential of anti-IL13R α 2-ADC LM-306 as a targeted anti-cancer agent.

Disclosures

Disclosures: The authors declare no conflict of interest **Fundings:** This study was sponsored by LaNova Medicines, Shanghai, China